

Executive Summary
Engineering Standards and Design Practices
Knowledge of digital and analog circuit measurement and analysis. Knowledge of PC104, FPGA, and CPU
circuit component communication. Knowledge of I2C and JTAG communication standards. Fluency in C
with embedded systems specialty. Python will be used to write software for the ground station and
software-defined radio. Knowledge of radio frequency and antenna design. The CubeSat standard was
developed in 1999 by Stanford University and California Polytechnic State University. This is the standard
that defines the satellite for our project. Specifically, it determines the volume and mass constraints. The
CubeSat standard is intended for satellites in low earth orbit.

Summary of Requirements

● The onboard computer must be able to communicate with all other satellite subsystems
● The onboard computer can remotely talk to the ground station
● Software-defined radio can capture and store scientific data
● The onboard computer can perform health checks of all subsystems
● Unit tests for each subsystem
● Onboard computer software to complete the main mission
● Conduct stack tests and final assembly
● Mock launch success

Applicable Courses from Iowa State University Curriculum
● CPRE 185/186, 281, 288, 488
● COMS 309, 326
● EE 230, 330

New skills/knowledge acquired that was not taught in courses
Some new things that we have come across on this project so far include the process involved with

working with a team that is much larger than in any of our previous project classes and designing printed
circuit boards. The CySat project has many people who have worked on it to some degree and so finding the
right person who has knowledge on a specific subject for continued development can be difficult at times
since guidance is not immediately available within our senior design group. None of our team members
have had any previous experience building printed circuit boards, so we learned new software tools and
design processes. More knowledge that we had to learn was how to communicate serial data over a radio.
This was something we were struggling with for a while because it is complex and no one had prior
experience. We encountered a lot of complications throughout the process of trying to transmit data
between radio devices.

Table of Contents

1. Introduction 4
1.1 Acknowledgement 4
1.2 Problem and Project Statement 4
1.3 Operational Environment 5
1.4 Requirements 5
1.5 Intended Users and Uses 5
1.6 Assumptions and Limitations 5
1.7 Expected End Product and Deliverables 5

2. Specifications and Analysis 6
2.1 Proposed Design 6
2.2 Design Analysis 7
2.3 Development Process 8
2.4 Design Plan 8

3. Statement of Work 10
3.1 Previous Work And Literature 10
3.2 Technology Considerations 10
3.3 Task Decomposition 10
3.4 Possible Risks And Risk Management 10
3.5 Project Proposed Milestones and Evaluation Criteria 11
3.6 Project Tracking Procedures 11
3.7 Expected Results and Validation 11

4. Project Timeline, Estimated Resources, and Challenges 13
4.1 Original Project Timeline 13
4.2 Feasibility Assessment 14
4.3 Adjusted Deliverables 14
4.4 Personnel Effort Requirements 15
4.5 Financial Requirements 15

5. Testing and Implementation 15
5.1 Interface Specifications 15
5.2 Hardware and software 15
5.3 Functional Testing 15
5.4 Non-Functional Testing 15
5.5 Process 15
5.6 Results 16

6. Closing Material 18
6.1 Conclusion 18
6.2 References 18
6.3 Appendices 18

Document Acronyms

M:2:I - Make 2 Innovate
OBC - Onboard computer
EPS - Electrical power system
ADCS - Attitude determination and control system
SDR - Software-defined Radio
LNA - Low noise amplifier
FPGA - Field programmable gate array
ISS - International Space Station
LEO - Low Earth Orbit
CRS - Commercial Resupply Service
PCB - Printed circuit board
UHF - Ultra-High Frequency
COTS - Commercial Off The Shelf

Document Figures

Figure 2.1 - Simplified design overview of components related to CySat’s core mission operation.
Figure 2.2 - Simplified CySat component subsystem diagram. Major subsystems with software
relevance bolded.
Figure 4.1- CySat Timeline Gantt Chart

1. Introduction

1.1 ACKNOWLEDGEMENT

Significant funds have been provided for this project by the Iowa Space Grant Consortium, Make 2 Innovate
(abbreviated M:2:I) and NASA, as well as other donors. The M:2:I team will also provide expertise and labor
on other physical aspects of the project.

1.2 PROBLEM AND PROJECT STATEMENT

M:2:I, a group on the Iowa State University campus, has been in the process of developing a CubeSat to be
put into orbit around Earth. A CubeSat is a small, uniformly sized satellite which will contain a scientific or
research component. M:2:I have enlisted the help of our senior design team to write software for, test, and
integrate the various components of the CubeSat (named CySat). In order to get the satellite into orbit, we
had to complete these tasks by a deadline in the early spring, so we can hand the satellite off to NASA, who

will facilitate the launch. This has since changed since COVID-19, which altered the progress of the satellite.
The new deadline is after next fall when the next NASA launch occurs.

According to CySat’s mission statement, the purpose of the satellite is to demonstrate the technology of the
satellite and the software running on it. The satellite will have a radiometer onboard, which will be used to
collect moisture data from the surface of the Earth. The data collection and processing via the
software-defined radio will provide insight into previous thesis work and pave the way for additional
research in future satellites. M:2:I hope to use the technology and lessons learned from CySat-1 on future
satellites, which may have missions such as surveying asteroids or other space objects.

1.3 OPERATIONAL ENVIRONMENT

The end product will have to endure the intense vibrations of taking off from Earth in one of the
International Space Station (ISS) resupply trips. From there, the satellite will be released from the airlock
into Low Earth Orbit (LEO) where it will communicate the data it collects with a ground station in Ames,
Iowa. These constraints impose great physical requirements that our team will not deal with very much.

1.4 REQUIREMENTS
● The ground station in Ames, Iowa must be functional and able to communicate with the satellite
● The satellite must not begin communicating with the ground station until 30 minutes after it has

been released from the ISS
● The EPS must provide power to the other subsystems of the Satellite
● The OBC must delegate processing time to the various subsystems to ensure all necessary tasks are

completed in a timely manner
● The ADCS must be able to orient the satellite

1.5 INTENDED USERS AND USES

The end-user of this product is the M:2:I group and the members of it who will collect and use the data
transmitted by the satellite. It will be equipped with a radiometer, which will collect data about the water
levels on Earth.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions

● The satellite will deorbit and burn up after roughly 6 months in LEO
● If the satellite can pass our vibration tests, then it will withstand the launch to the ISS

Limitations

● The physical dimensions of the device are set to 3u (one u is 10cm x 10cm x 11.35cm)
● The satellite must not weigh more than 4kg (1.33 kg per u)
● COVID-19 limited the time we could spend in the lab working with physical components

1.7 EXPECTED END PRODUCT AND DELIVERABLES
● SDR carrier board designed and fabricated
● Voltage boost board designed and fabricated
● LNA board designed and fabricated
● OBC communicating with EPS, ADCS, SDR and UHF transceiver
● Ground Station UI
● Ground Station communicating with OBC
● Dry fits 1, 2, and 3 (done by M:2:I team)

○ Dry fit 1 is physical constraint testing
○ Dry fit 2 is wiring
○ Dry fit 3 includes power-up sequence

● Software beta version - due week of February 14th

○ Demonstrates all critical tasks, including health check and ground station to OBC
communication. Some systems may still not be integrated.

● Handoff Documentation - due May 2020
○ To be handed off to well documented and ready to hand off to the next senior design team

2. Specifications and Analysis

2.1 PROPOSED DESIGN

Each major subsystem of our project with a focus on the proposed design is delineated below.

ADCS - ADCS refers to attitude determination and control system, it’s controlled by OBC through I2C serial
bus and it includes several important peripheral components such as magnetometer. There are 256
telecommand and telemetry requests that can be used to manage those peripheral components, my work is
to write C functions for OBC to send those telecommands required by initiate and detumbling process. Due
to the outbreak of COVID-19, the lab is closed and we no longer have access to the ADCS board, in other
words, they can't be tested now.

Boost Board - The boost board needs to boost 5 volts up to 8 volts. The circuit uses a chip from Texas
Instruments that can handle our specific power requirements. The circuit has been redesigned due to the
previous chip size being too small to solder and the printed circuit board has been ordered. We hope to
receive it soon so proper testing can be done.

SDR Carrier Board - The carrier board interfaces between the SDR and the LNA board. It was created
before, but we redesigned some of it because we needed a 10 pin connector on it instead of a 5 pin
connector so we can have more functionality. It was reordered and upon testing, found to have minor
measurement issues with the connectors that have since been fixed. The board is not going to be ordered,
but is done so the next team can do it and make any potential changes that might arise.

SDR - The functional requirements for the SDR component consists of; being able to take signals in,
convert it to data that can be saved to a file, and then transfer that data over UART to the OBC for
transmission to earth. Communication over UART with the SDR component and a standalone serial USB
connected computer has been tested and verified as working. Continued development on the SDR
component will make it possible to communicate between the SDR and OBC. Once successful
communication between the SDR and OBC is established, development can move onto getting a signal
from the radiometer to feed into the SDR and be processed.

UHF Transceiver/Antenna - The UHF Systems are the key components for communication between our
satellite and the ground station. The UHF Transceiver is used to package data to be sent out the UHF
Antenna and picked up by our ground station and unpacked. This will also work the reverse direction as we
figure our ground station radio issues and work on the packing of data for transfer. Current issues revolve
around the differences between our ground station stand in radio and the EnduroSat UHF systems.

EPS - The software running on the OBC which controls the EPS needs to ensure that the subsystem passes
all health checks required by the M:2:I team. Additionally, power consumption should be observed to
ensure that the satellite is not draining its resources too quickly. The OBC software needs to be able to
enable and disable power to certain components by controlling the PC-104 pins driven by the EPS. I have
written functions to send all read and write commands, and have tested most of them on the flight

hardware. We had to send in our EPS module for firmware updates requested by EnduroSat and haven’t
had the hardware in house since.

OBC - The OBC runs nearly all of the software for the satellite, except for the scientific calculations
performed by the SDR. Nearly all of the requirements for the OBC component of the satellite are functional
requirements needed to complete the mission. So far we have communicated to some components on the
stack such as the EPS powering the OBC and UHF Systems, as COVID-19 took away our ability to access our
components we have not yet tested full stack.

Ground Station - The ground station will allow Earth (M:2:I) to communicate with the satellite. It will be
able to request scientific data, health checks, battery level, telemetry data, and receive the beacon. It
communicates through serial input and will be developed using the discovery board. C code will be written
to handle the serial commands in order to send and receive data from the satellite. Extensive testing will be
required to make sure the satellite is able to properly handle different commands.

2.2 DESIGN ANALYSIS

Each major subsystem of our project with a focus on the design analysis is delineated below.

ADCS - C functions for all Telecommand and Telemetry requests needed for ADCS initiate and detumbling
process. Those c functions can perform basic telecommand and telemetry requests such as setting Unix
time or measuring wheel speed. These functions cannot be tested yet, but we have used the IMU chip to
test the I2C communication between OBC and slaves and have been successful. Both are based on the same
principle, so these c functions will work with high probability, except for a few possible minor problems.

Boost Board - A circuit that met the power requirements was created using a Texas Instruments chip. The
circuit was then made in a computer program and transferred to a printed circuit board layout where
everything was connected together. For physical testing, we soldered all the parts on the board and checked
all components for open connections. We founded that the solder had bridged two pads under the TI chip.
The pads were so close together that it made it almost humanly impossible to solder it by hand. That is why
we had to redesign the board with a new and larger chip.

SDR Carrier Board - This was created before we joined the team, but some revisions had to be made. We
decided to use different connectors so the board had to be slightly redesigned and all the components had
to be rerouted. This was tested by trying to snap the connectors together with the SDR board. There were
minor measurement issues that made it unable to fit. This has since been fixed.

SDR - The previous semesters Computer Engineering 488 class had done some work with this component
before our team was handed this project. Navigating and making sense of the work that had been done
ahead of time as well as doing our own testing to ensure understanding of each level of complexity took a
while. Runtime scripts had to be verified, UART communication scripts had to be completed and tested,
and the development of scripts on separate components for UART communication had to be developed.
Initial testing of UART communication exposed some issues with data mishandling. Continued
development for control flow for SDR component operation and communication between the OBC and the
SDR will be the next major undertaking.

UHF Transceiver/Antenna - Configured Transceiver to receive data at the specified frequency. Set the
beacon value to “Hello World”. Connected a dummy antenna and attenuator to allow testing without fear of
frying the board with transmissions too “loud” for the components. Commands are written to be sent
straight to the UHF Transceiver for configuring the values while in space, as well as sending direct to the

Antenna for deployment. The data that is to be sent to the ground station is sent through the Transceiver to
be packaged before being sent to the ground station.

OBC - For the OBC, some software has been written to experiment with I2C and UART communications.
We have moved from working with a cheap, disposable development board to the satellite’s final parts as
our testing has proven we wouldn’t damage components. After testing some of these communication
protocols, we began communicating with the subsystems of the satellite, such as the EPS and UHF
transceiver. In this situation, to reduce risk, we want to use the PC-104 bus to physically connect the
components of the satellite, since this is a recognized standard and is integrated on the boards. So, we have
ported the software from the development board back to the satellite’s OBC for further testing. This will
require careful programming to ensure that we don’t accidentally fry any of the boards by having bus
contention or other hardware issues. Luckily, I2C does not allow for bus contention.

One of the strengths of developing in this manner, where we write code on one device, test it and
then port it to another device is that it leads to far less opportunity for mistakes with expensive satellite
hardware components. One weakness however, is that the two devices are not exactly the same, no matter
how similar the chipsets are. Porting embedded systems software from one device to another is sure to
produce some unforeseen issues.

Ground Station - Implementation of the python interface to communicate with the satellite from Earth.
Leveraging the Python tkinter package for creating an easy-to-use interface. Wrote C functions to handle
serial input from the python application. Ramping up took some time due to having to meet with different
members of M:2:I and sorting through documentation to determine the best course of action.

2.3 DEVELOPMENT PROCESS

The development process we are following is a Waterfall model, which is a breakdown of project activities
into linear sequential phases, where each phase depends on the deliverables of the previous one and
corresponds to a specialization of tasks. The project is divided into several subsystems such as OBC, SDR,
EPS, ADCS Ground Station, and Boost Board, more details can be found in Figure 2.2. Each team member is
responsible for at least one of these. Every team member needs to work on their subsystems, those works
include building, debugging and testing, etc. After this series of groundwork has been completed, the next
step is to integrate the subsystems, which is followed by a series of interface/integration testing. Finally,
with the completion of system-level testing/Acceptance testing, the project will come to an end.

2.4 DESIGN PLAN

Our design plan is shown in figure 2.1. We divided this project into several subsystems shown in figure 2.2
and assigned them to each team member. After the work and component testing are done for those
subsystems, we plan to work on integration and System level testing to finish this project.

Figure 2.1 - Simplified design overview of components related to CySat’s core mission operation.

Figure 2.2 - Simplified CySat component subsystem diagram. Major subsystems with software
relevance bolded.

3. Statement of Work

3.1 PREVIOUS WORK AND LITERATURE

Iowa State University’s M:2:I team has been working on developing a CubeSat for many years now. In 2017
the payload was approved by NASA and supporting hardware was researched. During each semester since
2017, students have optimized the design and chosen the hardware that would meet their mission
requirements. Our task as the software team is to integrate all of the various electronic systems that have
been acquired and develop software for the satellite that will allow it to complete its mission.

Much of our design implementation will be based on the documentation in the CySat CyBox archive that
was already created by the M:2:I team prior to our team’s involvement with CySat 1.0. In 2017, NASA
published CubeSat 101: Basic Concepts and Processes for First-Time CubeSat Developers. This article details a
lot of basic information about CubeSat development. Utilizing parts of this literature and the M:2: I
documentation allowed our team to get up to speed with the overall status of CySat’s development.

3.2 TECHNOLOGY CONSIDERATIONS

Many CubeSats, as will CySat, use a PC-104 stack for compact bussing of data signals between the various
satellite components. Because this standard is widely used, finding off the shelf components that interface
with the PC-104 stack is not difficult. Many components like the OBC and ADCS have PC-104 built into
them for ease of integration.

Once CySat is launched into space it can no longer be serviced by our team. Thus, we have to be
particularly cautious in selecting quality components, which ultimately drives up the cost of CySat, and be
sure to integrate them properly prior to launch.

Some of the hardware needed for CySat is not available as a complete off the shelf drop-in solution. This
particularly is the radiometer payload and SDR component combination. Our team has worked to take
several off the shelf components which may or may not have a PC104 connection and develop our own PCBs
to integrate the various systems. Several custom PCB s with suitable dimensions and integrated hardware
are required to fulfill CySat’s requirements.

3.3 TASK DECOMPOSITION

CySat has various components that will all need to be worked on separately before the entire system is
integrated. Communication established with the OBC will be the first task that will need to be completed.
Next, we will need to establish communication from the OBC to each of the various subsystems (UHF
Transceiver/Antenna, SDR, ADCS, and EPS). After communication with each major component is
established individual subcomponent software development will take place. Each subsystem will go through
rigorous testing of all major functions and then be integrated for full system testing. Once successful, the
development will continue for items deemed as “quality of life” tasks.

3.4 POSSIBLE RISKS AND RISK MANAGEMENT

Our team has a very basic knowledge of embedded systems and software design. Specialized systems, like
that used on CySat, require learned knowledge and understanding before jumping straight to development.
The components used on CySat are quite expensive and unfamiliarity with them can lead to mishandling or
possibly destroyed hardware. Our team will be working closely with the individuals who selected the
various components to gain familiarity and confidence before working with the hardware.

Since CySat is a longstanding project, there is a wealth of information to digest about the structures already
set in place. Our team will meet weekly with the M:2:I group and our project advisor to keep our team in
the loop with other project developments as well as provide us time for seeking knowledge on the various
subsystems from those with experience.

CySat requires custom hardware to be built in order for it to complete its mission requirements. Our team
will be tasked with creating the necessary PCBs CySat will require. Since our team has no experience
working with custom PCB creation, it is likely that mistakes will be made along the way. We will be
focusing on getting the custom hardware designed, built, and tested earlier on in our project timeline so
that any mistakes made can be corrected without becoming a time-critical task.

Another risk that came onto us abruptly was due to COVID-19. This was an unforeseen risk that we were
obviously not prepared for. This held us up by not having physical access to the components.

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

Since CySat has so many systems, project milestones will be very important for tracking the overall
development progress of various components. Startup and functioning “Hello World” programs for each
major component is our first milestone. Following successful “Hello World” implementations, development
for communication between the OBC and each subcomponent will be another major milestone focused on.

One of two project critical milestones will be the completion of hardware and software that can collect,
process, and save scientific data from the radiometer on the SDR component. The next critical milestone
will be to transfer the scientific data to the OBC and relay that information over the UHF antenna to the
ground station.

The final milestones for the project will include having the printed circuit boards ordered and having
everything in the project thoroughly documented. Having detailed documentation will help the next team
get a great understanding of what needs to be done and where they exactly need to start.

3.6 PROJECT TRACKING PROCEDURES

Our team will organize tasks by utilizing the issue ticket system on GitLab. We will meet as a team and
establish tasks that are to be worked on in the coming weeks. Our team has received an abbreviated list of
tasks from M:2:I that we will enter into GitLab as our baseline tasks. We will establish other tasks based on
more specific items relating to hardware or software requirements surrounding those abbreviated tasks.
These tasks will be assigned to the team member they seem most appropriate for and progress will be
tracked by noting the completion of each issue on GitLab. Subsequent tasks will be suggested in our weekly
meetings by M:2:I or our project advisor and added to our GitLab for tracking and completion.

3.7 EXPECTED RESULTS AND VALIDATION

Since CySat will be headed to LEO, an environment that cannot be simulated easily or accurately on Earth,
there will be a point in which our tests will no longer be able to accurately replicate conditions. We will
only be able to expose the system to potential conditions in which we can replicate. Final testing of CySat’s
software will have to be rigorous and thorough to minimize as many of the unknown conditions as possible.

In conclusion of our development, CySat should be able to autonomously control its subsystems, take
measurements using its radiometer, and relay that information over radio waves to a communication
station. The successful operation of these tasks will conclude our portion of the development of CySat.
Conclusively, we should have a fully operational and tested CubeSat that will be ready to launch into space
to begin its mission. Initial communication and data retrieval with CySat after launch will be the testament
of a successful design.

4. Project Timeline, Estimated Resources, and Challenges

4.1 ORIGINAL PROJECT TIMELINE

August

● Team formed
● Assign Tasks and roles

September

● Achieve an understanding of our roles
● Understand documentation
● Established meeting times

October
● Trial of equipment and troubleshooting
● Update of documentation
● Stack tests as needed

November

● Hello world functionality among our subsystems
● ConOps discussion (incremental mission tasks)
● Establish definitions of mission-critical components.
● Written timeline of critical software

December

● Boost board order
● After the Boost Board arrives, decide final revisions.
● Update documentation

January

● All boards on the final revision
● 25-50% unit functionality

February
● Beta version of the software. This should be able to complete critical components but not

necessarily the whole mission.
March

● ConOps discussion (incremental mission tasks)
● Brainstorm solutions meeting
● Request remote solutions
● Discuss new project deliverables

April
● Thorough code documentation
● Remote solutions implemented

May

● Ensure all materials and documentation are available for the next team

This timeline is to make sure that our development schedule aligns with the June handoff.

Figure 4.1- CySat Timeline Gantt Chart

4.2 FEASIBILITY ASSESSMENT

After debate with the various components involved with this project, each system has been given its own
feasible timeline to work forward from and with this, we are able to more accurately move forward with a
handoff to a new team. Since we are no longer looking at the handoff to NASA so early because of the
complications of the COVID-19 virus, we are more able to achieve smaller set milestones before the end of
semester. Complications including being forced to only work remotely caused several component
momentum to come to a standstill. Secondary complications come from an issue with the varying radio
components from Kenwood ground station to our EnduroSat UHF Systems, working with these have
resulted in having only a working beacon and long trials with the packaging system included in the
Transceiver. With these new complications we have adjusted our deliverables and shifted our focus to
include a much deeper documentation for the next set of students working on the project.

4.3 ADJUSTED DELIVERABLES
Adjusted deliverables due to COVID-19 are as follows:

1. Develop software to complete a "Mock" Mock Launch, and record the performance as part of
documentation for future teams. The "Mock" Mock Launch will consist of simulating the actions of
the satellite from the point we hand off the satellite to NASA to the point where the Satellite enters
its Main Operating phase. This includes, powering on components of the satellite, initiating a
beacon to gain connection with the ground station and then running initial health checks to ensure
the satellite is functional. Due to forced remote work, certain aspects of the launch cannot be
simulated, such as deployment of the antenna, SDR and EPS health checks, and dynamically
powering on components of the satellite.

2. Develop documentation, videos and infrastructure to ensure that a smooth handoff to the future
CySat software team can be made despite not being physically in the lab.

3. The front end software for the Ground Station interface. This will be the end-users' portal to
communicate with the satellite during its mission.

4. The custom boost board PCB, which boosts the 5v pin to 7.4 volts for the ADCS, will be printed and
fabricated by the end of the semester.

5. The carrier board, which interfaces the SDR to the rest of the satellite will be ready to order by the
end of the semester. We will not order it, but provide instructions to do so for the next team.

6. All other aspects of the project are going to be left in the states they were in before leaving for
Spring Break.

4.4 PERSONNEL EFFORT REQUIREMENTS

Boost Board: Talon December

● This task needs to boost the 5V source to 8V. This will be tested after it comes in to ensure that it
completes this task, as well as test functionality for the enable pin.

Subsystem Health: Bryan, Xianzhu, Ryan, Chase, Talon, Kyle January-February

● After assembly, the OBC will be able to send health requests to each system and each system will
be able to respond back to the OBC.

Startup Sequence: Kyle, Xiangzhu, Bryan, Chase January-April

● This sequence needs to wait 30 minutes (EPS) and then start detumbling sequences(OBC->ADCS),
after detumbling is finished the beacon starts from the UHF system(UHF Transceiver -> UHF
Antenna).

Main Operating Mode: Bryan, Ryan, Talon, Kyle January-March

● The main operating mode takes place in two parts, the payload mode, and the ground station
mode. Communication between the payload, SDR, OBC, and UHF Antenna must work as described
for mission requirements.

Boost and SDR Carrier Board Redesign: Talon, Ryan March-April

● The boost board was redesigned and reordered due to the main component being too small to
solder without a machine. Carrier board was redesigned after finding that the connectors were
slightly off.

Diagnostic Mode: Whole Team April

● After the startup sequence finishes CySat can enter diagnostic mode. in diagnostic mode each
individual component needs to be able to send a health check, then components should be able to
perform required tasks. This point should also include being able to run the final mission.

4.5 FINANCIAL REQUIREMENTS

All funding has been provided by M:2:I and its partners for this project. Hardware and structural
components have either been bought, machined in house, or donated. The CySat project has an overall
estimated value of over $120,000.

5. Testing and Implementation

NASA requires extensive testing in order to deploy a satellite into space. Testing requirements include
functional, non-functional, vibe, and launch testing to name a few.

Testing Plan:

1. Define the needed types of tests (unit testing for modules, integrity testing for interfaces, user-study for
functional and non-functional requirements)

2. Define the individual items to be tested

3. Define, design, and develop the actual test cases 4. Determine the anticipated test results for each test
case

4. Perform the actual tests

5. Evaluate the actual test results

6. Make the necessary changes to the product being tested

7. Perform any necessary retesting

8. Document the entire testing process and its results

5.1 INTERFACE SPECIFICATIONS

Subsystems will interface with the OBC throughout the satellite path. The OBC will also be interfaced with
Ground Control for data collection and satellite status checks.

5.2 HARDWARE AND SOFTWARE

Vibration Testing: Requires a specialized chamber to verify that the physical components are structurally
sound.

Regression Testing: Confirms that a recent code push doesn’t negatively affect existing features.

-It will be completed through automated and manual procedures.

-Automate testing processes completed within Gitlab after deployments are made.

5.3 FUNCTIONAL TESTING
Examples include unit, integration, system, and acceptance testing

● Unit testing for each subsystem - Making sure each subsystem is fully functioning and
communicating properly.

● Vibration testing - Making sure all physical components will stay pieced together on the space
shuttle

5.4 NON-FUNCTIONAL TESTING

● Testing on the actual subsystem components to check for any compatibility issues.
● Usability testing is done for ease-of-use for the ground station interface.
● Testing the enable pins on all boards for making sure there won’t be any unnecessary power

consumption.

5.5 PROCESS

Instead of using the actual expensive components of the satellite, we are using development boards with
the same type of processor as their respective subsystems. This is so that we do not risk making any
mistakes early on that could potentially destroy some expensive components. After there has been
thorough testing done with the subsystems on their development boards, testing will proceed on the real
satellite components. This will help us know of any changes we need to make to the code developed using
the development boards since there could be errors such as compatibility issues.

With COVID-19 causing unforeseen delays and issues, we have had to make some major adjustments to our
goals. We have transitioned to remote working, however this still causes some major pieces to not be able
to be worked with. Physical access is key in testing and coding for many of these devices, such as flashing
code to the OBC or testing Radio transmissions. We have made setups to work with these components, but
this still requires some hands on cord rearrangements that will be difficult to coordinate.

5.6 RESULTS

Below are some initial testing results from limited testing we have been able to do so far.

● UHF System-
○ Failures-

■ Initial command usage attempts. Needed to configure the send commands to
correct the Carriage Return value.

■ Unable to test the UHF Antenna based on its design. We cannot deploy the
antenna for testing because we can’t put it back after deployment.

■ Communication between our ground station radio and UHF Transceiver was
unable to be tested.

○ Successes-
■ Able to send commands to configure and change the UHF Transceiver

configurations
■ Have plans to set up an antenna testing system for the UHF system as well as a

ground station
■ Have a means of setting status / ESTTC commands for the UHF Transceiver.
■ Have a means setting a beacon that we can pick up from the ground station radio.

○ Learned-
■ How to apply various commands to the UHF system for configuration
■ How the transceiver takes input commands
■ This transceiver will take in data from the antenna and push it out to our OBC.
■ How to send ESTTC commands over I2C.
■ Radio features and baud rates that cause data to be lost.

● SDR
○ Failures

■ The initial creation of runtime files did not call properly and failed.
■ Initial testing of runtime script using UART communication failed to sense data in

the input buffer.
○ Successes

■ PuTTY to SDR communication and printed “hello world” as expected.
■ Python script for SDR and OBC equivalent communicating over UART.

○ Learned
■ Correctly setting up runtime files for Unix systems.
■ Serial buffers need to be cared for properly upon setup.
■ Clearing buffer before use gets rid of any erroneous data.

○ Challenges
■ Custom PCBs used for rerouting signals needed for SDR communication with OBC

still being developed.
■ Restricted to testing UART communication using a laptop with a serial USB

simulating the OBC or development test board acting as temporary OBC.
● OBC

○ Failures
■ Setting up I2C communications initially led to many to many failures due to

hardware issues.
■ Malformed data parsing on the receiving side of the I2C bus.

○ Successes
■ After ensuring a correct hardware connection, we were able to properly receive

data on the OBC development board.
■ Able to write functions to send data over UART to a virtual com port on a

computer.
■ We were able to port the UART and I2C code from the development board to the

real, runtime OBC.
○ Learned

■ We learned more about reading from datasheets.

■ How serial communications work from a hardware and software perspective with
first-hand experience.

6. Closing Material

6.1 CONCLUSION

As of April 26, 2020 we are still working on the project remotely. The launch date has been pushed back to
an unknown point in time due to the Coronavirus Outbreak and subsequent delays and closures. The status
of the software team’s progress has been nearly stagnant since the week before Spring Break due to the
heavy physical aspects of the project. Remote systems took nearly a month to get set up after break, so our
goals had to be altered significantly. A majority of our focus now lies on documentation and setting up a
handoff to the next software team.

6.2 REFERENCES

Our references include all documentation that we have regarding the specific components of the satellite.
These are manuals that are provided by the companies where we purchased the components.

6.3 APPENDICES

One large problem we encountered was that the specific files we need to work with the OBC are not version
controlled well by Eclipse and it completely messes up the project if you try to import it. There also may be
an issue with our JTAG to USB converter, but we have yet to test that.

The biggest issue we faced however was issues due to the COVID-19 pandemic that caused us to lose access
to our physical components. Without any physical access much of our progress was halted until we were
able to get a temporary remote setting set up. As we made these plans originally for 2 weeks our plans
continuously changed as the timeframe expended to the end of the semester. This caused the project to
reassess the deliverables as well as the end goal for our semester as physical access is critical in the
completion of the system.

