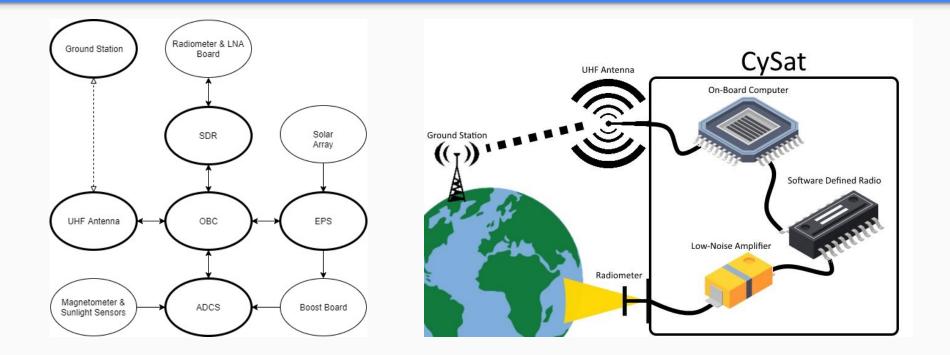
CySat - Satellite Mission Design

Team ID: SDMay20-49 Client: M:2:I

• Advisor: Dr. Phillip Jones

Team Members: Bryan
Friestad, Ryan Hansen, Chase
Kirchner, Kyle Muehlenthaler,
Talon Stromgren, Xiangzhu Yan


High Level

- Design the software for a satellite and ground station
- Satellite will be launched from ISS in Late 2020
- Payload will measure soil moisture content of Earth
- Software Defined Radio (SDR) will perform calculations on measurements to send back to Earth
- Ground Station will collect data from Satellite when it is overhead

Problem Statement

- CySat as a project has multiple purposes
- It is a learning experiment for students working on it
- It will pave the way for future launches
- The payload is centered around one of the project advisor's thesis

Project Concept

Functional Requirements

- Autonomous behavior
- Collects and stores scientific data
- Communicates with ground station

Technical Constraints & Considerations

- The components are expensive and/or fragile
- There are some things we cannot test on the ground
- There are numerous other team members to coordinate with
- It may be difficult/impossible to update software during flight

Risks

- According to NASA 42% of satellites launched between 2000-2016 failed
 - Extensive testing on Earth
- Components shaking apart on launch
 - Vibration test
- Worry of boards being damaged or fried under improper care
 - Checking documentation
 - Anti-static measures

Resource/Cost Estimate

CySat has invested over \$120,000 into CySat-1 from entities such as M2I, ISGC, NASA, and other donors.

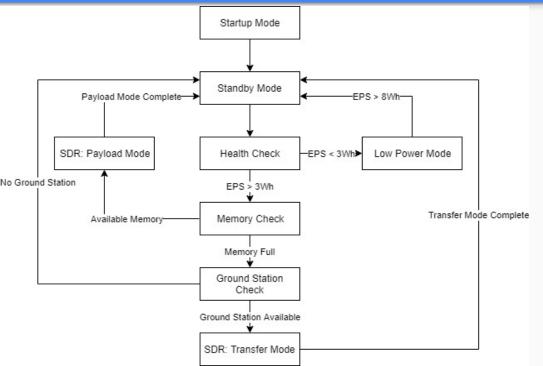
M2I also provides all resource and lab equipment in M:2:I lab in Howe Hall.

Project Milestones

- Boost board redesigned and reordered
- SDR carrier board redesigned and ready to be ordered
- SDR software can process and save radiometer readings
- Ground Station Software Version 1.1
- OBC code can perform Mock Launch, simulating all events from the moment of satellite hand off to the beginning of the main operating phase
- Code is heavily documented and progress videos were made to assist in future project development
- Infrastructure for smooth handoff has been laid, including introductory videos and "next steps" documents to ease transition

Project Schedule

Week of:	2-Dec	9-Dec	16-Dec	23-Dec	30-Dec	6-Jan	13-Jan	20-Jan	27-Jan	3-Feb	10-Feb	17-Feb	24-Feb	2-Mar	9-Mar	16-Mar	23-Mar	30-Mar	6-Apr	13-Apr	20-Apr	27-Apr	4-May
Task:																							
Power Budget																							
Concept of Operations v6																							
Boost Board																							
Carrier Board																							
LNA Board																							
Board Order Deadline	6-Dec																						
Solar Arrays																							
Wiring Plan																							
Build Procedure v 1.0																							
Winter Break																							
Integration Power ON																							
Complile Health Checks																							
Write Functional Checklist																							
Boost Board Testing																							
Software Beta (0.8)																							
Software v 1.0																							
Run Health Checks																							
Run Functional Checklist																							
Mock Launch																							
Concept of Operations v7																							
Software v 1.1																							
Ground Station Checks																							
Integration Health Check																							
Handoff Documentation																							
Review																							
Handoff Ready																							10-May
Estimated Vibration Test																						1-May	


Functional Decomposition

- OBC (On-Board Computer) Processing system overseeing and controlling all satellite functions.
- EPS (Electrical Power Subsystem) Provides all components with power.
- ADCS (Attitude determination and control system) Detumble and correct orbital motion of the CubeSat after launching from the ISS.
- SDR (Software Defined Radio) Converts the analog payload system data into digital information that can be saved and sent back to Earth.

Functional Decomposition

- Ground Station Communicates with Satellite for health checks and saves data via simple GUI
- UHF (Ultra High Frequency) Transceiver Packets information to be sent and configures beacon messages as well as frequency and various other functions.
- UHF Antenna Used to send and receive information from and to the ground station.

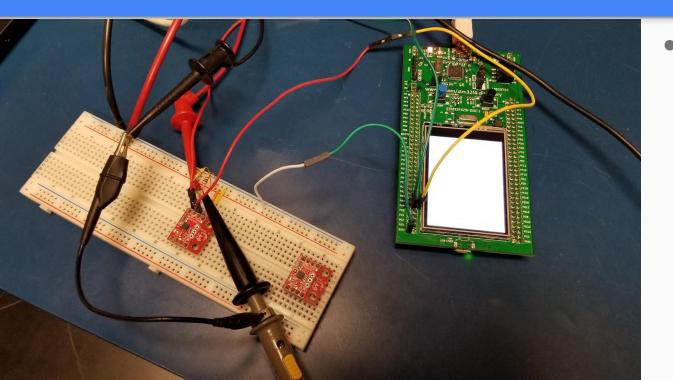
Detailed Design

- OBC contains a majority of the software code
- OBC software control flow will be the focus of second semester (concept shown left)
- Software requirements will need to meet M:2:I constraints

Technology Used

- PC-104 compact stacking signal bus structure
- I2C synchronous, multi-master, multi-slave, serial computer bus
- UART universal, asynchronous receive/transmit
- FM UHF frequencies via radio
- STM32F4 processor on the OBC

Testing Plan


• How is testing performed?

- Our approach is considered hybrid
- Software is emulated on development boards
- Some actual platform testing is completed (UHF transceiver and ADCS for example)
- Component testing
 - All isolated health checks for each component
 - ADCS Health Check by CubeSupport

Testing Plan

- Integration testing:
 - Health checks collected by OBC and sent to ground station.
 - Ensure each component can be powered from the stack
 - All components of satellite can communicate with central control
- System level / Acceptance testing:
 - Mock Launch (up to main operating phase)
 - Mock Mission (main operation and end of life)

Prototype Implementations

STMicro Discovery board hooked up to a SparkFun IMU breakout board to test I2C communications

Engineering Standards & Design Practices

- 12207-2017 ISO/IEC/IEEE International Standard Systems and software engineering --Software life cycle processes
 - Used the common software lifecycle processes while working with developing the satellite subsystem integrations
- 29119-4-2015 ISO/IEC/IEEE International Standard Software and systems engineering--Software testing--Part 4: Test techniques
 - Used for testing health checks on the satellite subsystems

Project Status

- Subsystems have been interfaced with separately.
- System integration with OBC, EPS, and UHF Transceiver has been successful.
- Preparing system integrations for mock launch requirements.
- COVID-19 delays are preventing integrations for mock mission requirements.

Team Member Roles & Contributions

- Bryan Friestad Team Lead, OBC Lead, EPS Lead 240 hr
- Ryan Hansen SDR Lead 196 hr
- Chase Kirchner Ground Station Lead 150 hr
- Kyle Muehlenthaler UHF Radio Lead 176 hr
- Talon Stromgren Analog Components Lead 156 hr
- Xiangzhu Yan ADCS Lead 164 hr

The future prospect of the project

- Detailed documentation is being worked on to provide the next team a clear starting point
- More commands will need to be written on the OBC to interface with the ground station and other subsystems
- Introductory videos for the next team, to give them a brief explanation of each of the main subsystems. This will assist in electing subsystem leads
- Clear and concise testing documents for PCBs and software components

